Biography
Databricks-Machine-Learning-Professional인기자격증덤프공부자료완벽한덤프데모문제
DumpTOP Databricks Databricks-Machine-Learning-Professional덤프의 질문들과 답변들은 100%의 지식 요점과 적어도 98%의 시험 문제들을 커버하는,수년동안 가장 최근의Databricks Databricks-Machine-Learning-Professional시험 요점들을 컨설팅 해 온 시니어 프로 IT 전문가들의 그룹에 의해 구축 됩니다. DumpTOP의 IT전문가들이 자신만의 경험과 끊임없는 노력으로 최고의Databricks Databricks-Machine-Learning-Professional학습자료를 작성해 여러분들이Databricks Databricks-Machine-Learning-Professional시험에서 패스하도록 도와드립니다.
Databricks Databricks-Machine-Learning-Professional 시험요강:
| 주제 |
소개 |
| 주제 1 |
- Identify live serving benefits of querying precomputed batch predictions
- Describe Structured Streaming as a common processing tool for ETL pipelines
|
| 주제 2 |
- Identify that data can arrive out-of-order with structured streaming
- Identify how model serving uses one all-purpose cluster for a model deployment
|
| 주제 3 |
- Identify less performant data storage as a solution for other use cases
- Describe why complex business logic must be handled in streaming deployments
|
| 주제 4 |
- Identify JIT feature values as a need for real-time deployment
- Describe how to list all webhooks and how to delete a webhook
|
| 주제 5 |
- Describe model serving deploys and endpoint for every stage
- Identify scenarios in which feature drift and
- or label drift are likely to occur
|
| 주제 6 |
- Identify a use case for HTTP webhooks and where the Webhook URL needs to come
- Identify advantages of using Job clusters over all-purpose clusters
|
| 주제 7 |
- Describe concept drift and its impact on model efficacy
- Describe summary statistic monitoring as a simple solution for numeric feature drift
|
| 주제 8 |
- Create, overwrite, merge, and read Feature Store tables in machine learning workflows
- View Delta table history and load a previous version of a Delta table
|
>> Databricks-Machine-Learning-Professional인기자격증 덤프공부자료 <<
Databricks-Machine-Learning-Professional시험 & Databricks-Machine-Learning-Professional시험대비 덤프공부
어떻게 하면 가장 편하고 수월하게 Databricks Databricks-Machine-Learning-Professional시험을 패스할수 있을가요? 그 답은 바로 DumpTOP에서 찾아볼수 있습니다. Databricks Databricks-Machine-Learning-Professional덤프로 시험에 도전해보지 않으실래요? DumpTOP는 당신을 위해Databricks Databricks-Machine-Learning-Professional덤프로Databricks Databricks-Machine-Learning-Professional인증시험이라는 높은 벽을 순식간에 무너뜨립니다.
최신 ML Data Scientist Databricks-Machine-Learning-Professional 무료샘플문제 (Q15-Q20):
질문 # 15
Which of the following MLflow operations can be used to delete a model from the MLflow Model Registry?
- A. client.delete_model_version
- B. client.transition_model_version_stage
- C. client.delete_model
- D. client.delete_registered_model
- E. client.update_registered_model
정답:D
질문 # 16
Which of the following machine learning model deployment paradigms is the most common for machine learning projects?
- A. Real-time
- B. Batch
- C. None of these deployments
- D. Streaming
- E. On-device
정답:D
질문 # 17
A machine learning engineer needs to deliver predictions of a machine learning model in real-time. However, the feature values needed for computing the predictions are available one week before the query time.
Which of the following is a benefit of using a batch serving deployment in this scenario rather than a real-time serving deployment where predictions are computed at query time?
- A. Computing predictions in real-time provides more up-to-date results
- B. There is no advantage to using batch serving deployments over real-time serving deployments
- C. Querying stored predictions can be faster than computing predictions in real-time
- D. Batch serving has built-in capabilities in Databricks Machine Learning
- E. Testing is not possible in real-time serving deployments
정답:D
질문 # 18
Which of the following describes the purpose of the context parameter in the predict method of Python models for MLflow?
- A. The context parameter allows the user to provide the model access to objects like preprocessing models or custom configuration files
- B. The context parameter allows the user to document the performance of a model after it has been deployed
- C. The context parameter allows the user to include relevant details of the business case to allow downstream users to understand the purpose of the model
- D. The context parameter allows the user to specify which version of the registered MLflow Model should be used based on the given application's current scenario
- E. The context parameter allows the user to provide the model with completely custom if-else logic for the given application's current scenario
정답:D
질문 # 19
Which of the following MLflow operations can be used to automatically calculate and log a Shapley feature importance plot?
- A. None of these operations can accomplish the task.
- B. client.log_artifact
- C. mlflow.shap.log_explanation
- D. mlflow.shap
- E. mlflow.log_figure
정답:D
질문 # 20
......
인테넷에 검색하면 Databricks Databricks-Machine-Learning-Professional시험덤프공부자료가 헤아릴수 없을 정도로 많이 검색됩니다. 그중에서DumpTOP의Databricks Databricks-Machine-Learning-Professional제품이 인지도가 가장 높고 가장 안전하게 시험을 패스하도록 지름길이 되어드릴수 있습니다.
Databricks-Machine-Learning-Professional시험: https://www.dumptop.com/Databricks/Databricks-Machine-Learning-Professional-dump.html